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SUMMARY

The logistic discriminant function receives much attention, especially in epidemiolo-
gical research. It is thought as being more general than the ordinary linear Fisherian
discriminant function. However, one has to pay for the assumed generality by ap-
plying more complicated iterative computations. Our aim is to issue a warning that
the generality attained when using the logistic formula is very restricted. We show
in more detail for what kind of data the logistic discriminant function is better, and
when it is equivalent to the linear Fisherian one. We also show for what kind of data
both the logistic and the linear Fisherian discriminant function are worse than the
quadratic discriminant function.

KEY WORDS: two-group discriminant function, probability a posteriori, exponential
family of distributions, shape of covariance matrices, long-tailed distributions.

1. Introduction

The logistic discriminant function receives much attention in statistical data ana-
lysis. It is especially popular in medicine when dealing with epidemiological data.
For a review of the topic, its methodology, applications and further references see,
e.g., Lachenbruch (1975), van Houwelingen and le Cessie (1988), McLachlan (1992)
and Steyerberg et al. (2000). However, it still seems that the role of the logistic
discriminant function — as opposed to the linear and quadratic ones — is perhaps
overestimated.

The aim of our paper is to show wherefrom the logistic discriminant function has
descended. We want to state clearly what can and what cannot be expected when
applying that function.

It happens, especially in epidemiology, when comparing a disease group with a
control group of (healthy) subjects, that the disease group exhibits different variances
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and covariances than the control. In such case the fundamental assumption underlying
the derivation of the logistic discriminant function (on the equality of the covariance
matrices) is not satisfied, and the logistic function may be inappropriate for the
analyzed data.

Let x = (x1,...,z,) denote an observed vector of data values. In Section 2 we
introduce briefly the Fisherian linear discriminant function for two groups of data.
In Section 3 we consider generally the Bayesian rule and the concept of the proba-
bility 4 posteriori for two groups of data and we arrive at the logistic discriminant
function with argument a(x), this argument being generally a non-linear function of
the observed variables X1,...,X,. In Section 4 we consider probability distributions
which are specific members of the exponential family of distributions. For such di-
stributions, the argument of the logistic discriminant function (derived in Section 3)
reduces to a linear function of the observed variables: a(x) = by + b1z1 + ... byzp.
Section 5 considers the practice of using the linear, logistic and quadratic discriminant
functions. We generate 2-dimensional data following specific distributions: Banana
shape, Higleyman shape and Lithuania sausage shape, also independent negative bi-
nomial and gamma distributions and compare in their context the role of the logistic
discriminant function with the two other ones. Section 6 gives an overall summary of
the results and some indications how to proceed in practice.

2. The linear Fisherian discriminant function as a classification rule

Already in 1936 R.A. Fisher (quoted after van Houwelingen and le Cessie, 1988) has
considered the following problem. Suppose that we have to do with given measure-
ments of two groups of data, coming from two populations with expected vectors p,
and pg (B = (g1 - Bep)s b = 1,2) and a common covariance matrix 3. Suppose
for the moment that the expected values u,, i, and the covariance matrix X are
known. Let x = (z1,22,...x,) denote a vector of observations in p variables coming
from one of the populations. Let 8 = (8y,...,8,)T denote a column vector of co-
efficients. To discriminate between the two populations, Fisher proposed to use the
linear combination x3 that maximizes the ratio

(1.8 — o) /BT EB. 1)

After some algebra we arrive at the result that the vector 8 maximizing the ratio
above is given as

BT = (uy — pg)=71 2)

The linear function z = x0 is called the linear discriminant function. The elements of
the vector 3 are called coefficients of the linear discriminant function. The maximal



Logistic discriminant function — applicability 23

ratio, attained after substituting into (1) the expression for 8 evaluated from formula
(2), is then equal to D? = B8TS~18, which is the Mahalanobis distance between the
two populations.

Let us point out that this procedure does not evaluate the intercept term S,
which is calculated by using the condition that the discriminant plane z = f; +
B1z1+ ...+ B,Tp should pass through the arithmetic mean of the expected values p,
and g, of the considered two groups of data.

In the case when only sample values X;,, X2, and S instead of the population
values p,, o and X are known, the ratio (1) and the formula (2) for the coefficients
of the linear discriminant function can be expressed in terms of the sample means
X1., Xp, and the sample within covariance matrix S. The vector b designating the
empirical discriminant function takes then the form

bl = (%;, — %,)S7L.
Let X denote the arithmetic mean of the sample means X;. and X, ,
X=(X.+%9)/2

The classification rule is then formulated as follows. For the given vector x
compute:

z=(x-X)b. 3)

If z > 0, assign x to group (population) 1, otherwise assign x to group (population) 2.

As pointed out in the original 1936 paper by Fisher and confirmed later, among
others, by M.G. Kendall in 1961 and H. Cramér in 1967 (see van Houwelingen and
le Cessie, 1988, for exact references) the same results concerned the form of the
discriminating vector b and the goodness of discrimination may be obtained in a
regression layout, taking as Y the group indicator variable, and X = (X;,...,X,),
the observed vector of features, as explanatory variables. For more details see, e.g.,
Lachenbruch (1975).

Let us underline here that the above results, coming from R.A. Fisher, are obtai-
ned on a purely algebraic ground, without any special assumptions on the probability
distributions of the variables; all we need is the assumption that the covariances in
both groups (populations) are equal.
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3. Probabilities a posteriori obtained from the Bayesian rule

8.1. The general Bayesian rule

Shortly after publication of Fisher’s work, another statistician, B.L. Welch, has shown
in 1939 the link of Fisher’s discriminant rule with the Bayesian approach (see van
Houwelingen and le Cessie, 1988, for exact references).

Suppose that we have to do with two groups, called also classes, denoted by C}
and Cj, characterized by multivariate vectors of features (traits) denoted by X =
(X1,X2,...,Xp). Suppose for the moment that we know the conditional distribution
functions P(X | Ck) and the 4 priori probabilities P(Cy) for k = 1,2 (Welch has
assumed that these are multivariate normal distributions with the same covariance

matrix).
Now let us assume that we have observed the feature vector X for one individual
7 and we denote the collected values by x = (z1,...,Zp). On their basis we want to

assign the individual Z to one of the two classes C} or Cj.
Then, the probability ¢ posteriori (alias: the posterior probability) that the
observation x belongs to class C] is given by the Bayesian rule

p(X | CI)P(CI) (4)
(x| C1)P(C1) +p(x | Co)P(C2) "

Dividing the numerator and the denominator of the right side of the above formula
by p(x | C1)P(C1) we may write alternatively (4) as
1

PO = T o aty ©

P(C1lX)=p

with a(x) equal to
p(x | C1)P(C1)
a(x) =In P [C)P(Ca) ° (6)

Let us note that formula (5) was obtained under quite general assumptions, without
stating exactly the form of the involved probability density functions — thus that
formula holds for every probability density function P(x | Ck),k = 1,2. The formula
shows that the posterior distribution P(C} | x) depends on the observational vector
x only through the score a(x) as given above.

We may consider the probability P = P(C; | x) as a function of the evaluated
score a = a(x). Then we obtain the logistic function f(a) =1/(1+e~*). The shape
of this function is shown in Figure 1.
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Fig. 1. The logistic function f(a) evaluated for the argument a € [—4.0, 4.0

One can see that the function f(a) has a sigmoidal shape. The function yields
probabilities P € [0, 1] depending on the values of its argument a:
— if a =0 then f(a) = 0.5;
- if a > 0 then f(a) is greater than 0.5 and approaches P = 1.0 with a tending
to +o0;
— if a < 0 then f(a) is smaller than 0.5 and approaches P = 0.0 with a tending
to —oo.

3.2. Definition of the ‘ODDS’ and the ‘LOGITS’

Having defined the d posteriori probability P, = P(C; | x), we may easily obtain
P, = P(C; | x), the posterior probability of the complementary event (which is that
x belongs to the complementary class C5), as

1 ezp{—a(x)}
PG 1) =1-P(C1]x) =1 -y o] = T eapfeat)} . )
The score a(x) appearing in (5) and (7) has an interesting property: it is directly
the (natural) logarithm of the Odds favoring the event C:

_P(Ci|x) 1 _
Odds(Cy | x) = P(C; %)~ eap{—a@)] ~ exp{a(x)},

thus
In(Odds(Ci|x)) = a(x).

A positive value of a(x) favors the class C, a negative — the class Cs.
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Considering problems in bioassay, C.I. Berkson introduced in 1944 (for exact
references see van Houwelingen and le Cessie, 1988) the logit transformation as

logit(p) = In(p/(1 - p)).
Substituting for p the posterior probability P;=P(C}|x), we obtain the logit for P; as
logit(P;) = a(x).

Looking at the above definitions of the logistic discriminant function defined by
formula (5) and of the odds, we see that they depend on the observed vector x only
through the score a = a(x).

An important question is: for which conditional distributions p(x|C%) (k = 1,2)
the score a = a(x) reduces to a linear function of the observed vector X, i.e., to the
form a(x) = by + xb?

The problem will be considered in the next chapter.

4. Probabilities a posteriori for distribution functions being a specific
member of the exponential family of distributions

Suppose that we have K groups of data indexed as k = 1,...,K. Usually, the
probability distribution function p(x|Cy) describing the data observed in the k-th
group (class) C} depends on some parameters 8, = (ng), el ,Hgk)), characterizing,
e.g., the location and shape of that distribution.

Apart from the class specific parameters 8y, the distribution p(x|C)) may depend
on some other constants, denoted here by ¢, which are the same for all groups (classes)
of the analyzed data. We might emphasize this directly by writing

p(x|Ck) = p(x|Ch; Ok, @).

In the following we will assume that K = 2, thus we will consider only two groups
of data, and our interest will be focused on the first group indexed by k£ = 1. The
other group, indexed as k = 2, will serve as the reference group.

An interesting and useful family of distributions considered frequently in statistics
is the exponential family which can be written down as (see e.g. Lehman, 1983;
Krzysko, 1996)

p(x;9) = h(x)ezp[y_ m:(8)Ti(x) — U(I)]. (8)

i=1
Here n(.) and T(.) denote real functions, which may be vectorized; the vector 9
denotes generally the parameters characterizing the probability distribution p(x; ).
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In particular the considered above probability distribution function p(x|Cy) de-
scribing the probability distribution for the kth group of data could also for some
data belong to the exponential family of distributions, what would then be indicated
by writing explicitly

p(x|Ck) = p(x|Ck, 9).

Let us substitute

9 = (ek’¢)’
m@) = 6, Ti(x)=x,

n:(9) = (), (=2,...,3),
D m(@)Tix) = Blx,¢),
- “U(br, ¢) = A6k, ).
Then the formula for the exponential family of distributions reduces to the equation
p(x | Ck; 0k, @) = h(x)exp{A(Ok, §) + B(x, @) + x64}. 9)

The family of distributions given by the equation above will be in the following called
“specially reduced exponential family” of distributions.
It can be proved that the following distributions belong to the specially reduced
exponential family (9):
(a) Multivariate normal Np(p,X) with the same covariance matrix (X; = ¥j) in
both groups of data,
(b) Poisson distribution P(\g),
(c) Binomial distribution b(n, py),
(d) Multinomial distribution w(n, s, p()),
(e) Negative binomial distribution NegBin(r,py),
(f) Gamma distribution fr(z;a, 8;), with a denoting the scale parameter, and 3;, the
shape parameter,
(g) Any mixture of (a)—(f), however assuming independent components.

Bishop (1995) noticed that if the probability distribution function under consi-
deration [i.e. the p(x | Ck; 0k, @), k = 1,2] follows (9), then we may further reduce
the expression a(x) given by (6). Substituting (9) into (6) we obtain

afx)

In { h(x)exp{A(61, ) + B(x, ¢) + x0,} P(C}) }
h(x)exp{A(02, @) + B(x, ¢) + x62} P(C>)
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= In {exp{A(Ol,qb) — A(02,¢) +x(61 — 02)}P(Cl)}

P(Cy)
= xb+bg,
where
P(Cy)
b=0,—-0,, by=A(0,,¢)— A(O3,¢)+In ..
1 2 0 ( 1 d)) ( 2 ¢) P(Cg)
Thus we see that (5) reduces — in case of p.d.f. of the exponential type (9) — to
1
P(C = , 10
) = o 7)) (10
which may be rewritten as
P(Cy | x) = ! with () = bo + xb. (1)

1+ ezp{—i(x)}’

The formula above presents the famous logistic discriminant function. It
can be seen that the probability ¢ posteriori of belonging to class C; depends only
on (p+ 1) parameters bg, b, ..., b, and its evaluation does not explicitly require the
detailed knowledge of the distributions p(x | Ck; 6k, @) and their parameters 8 (k =
1,2) and ¢. The formula (10) permits to evaluate the posterior probability P(C; | x)
as a simple (although nonlinear) function of the linear score

l=1(x)=by+bixy+...+byxp.

In other words: in the representation by the logistic discriminant function, the po-
sterior probability P(C} | x) is expressed as a (nonlinear) function of one summary
variable ! evaluated as a linear form of the observed values x,...,zp.

However, this does not mean that the coefficients of the linear score I(x) are
exactly equal to the coefficients of the Fisherian linear discriminant function. This is
only true when the underlying probability density functions are multivariate normal
with the same covariance matrix.

5. Practice of using the logistic discriminant function
5.1. Computational issues

The computation of the Fisherian linear discriminant function using of the explicit
formula (2) is straightforward and very quick. Also, the search for the variables with
the greatest discriminatory power — a stepwise search or all subset search — can be
carried out quite quickly.

Computation of the parameters of the logistic discriminant function can be done
only in an iterative way, with all drawbacks of this method (much longer compu-
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ting time, possible problems with convergence, local maxima, colinearity of computed
variables). Usually this is done by the maximum likelihood approach employing a
kind of Newton-Raphson algorithm. The widely used algorithm is that proposed by
Jennrich and Moore (1975). There is also known and still in use a classical sequen-
tial algorithm described by Walker and Duncan (1967) which permits to adjust the
solutions sequentially when adding new observational vectors to the data base.

The goals and the immediate results furnished by the linear Fisherian and the
logistic discriminant function are different.

The goal of the Fisherian discriminant analysis is to provide a tool called di-
scriminant function, which permits for each new observation vector x to be classified
either to group 1 or group 2.

The logistic function is oriented rather to computing probability of belonging to
group 1 — provided that the observation vector x is given. In some problems, we are
rather concerned with evaluation of the probabilities, and not with classification (see,
e.g., Wooff et al., 1999).

Of course, in the case of computing the Fisherian discriminant function after cal-
culation of the coefficients by, b1, ...,b, we may evaluate easily p(C, | x) as indicated
by formula (7).

5.2. What can be expected for some distributions

Considering the specific exponential family of distributions described by formula (9)
in Section 4 we have seen that one special case is the multivariate distribution with
the same covariance matrix in both groups of data. Thus, in the case when we
have to do with continuous variables with nearly normal shape but with unequal
covariance matrices in the two considered groups of data, the linear and also the
logistic function will be inappropriate for discriminant analysis, unless the considered
groups are really far apart each from the other. It can be expected that in such
cases the quadratic discriminant function will be much more appropriate: it will give
lower error rates (for the definition of the quadratic discriminant function see, e.g.,
Lachenbruch, 1975). Thus there is no reason to expect that the logistic discriminant
function will be superior to the Fisherian discriminant function in such cases.

On the other hand, the exponential family of distributions contains some long-
tailed distributions (like the Gamma and the Negative Binomial distributions) which
may give different covariances in the considered two groups of data: in such cases the
logistic discriminant function may be more appropriate then the linear one.

5.3. Reports in the statistical literature

In the statistical literature one may find reports from special investigations on asses-
sing the fit and performance of the logistic model in various circumstances, trying to
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elucidate that topic. Especially the fit for the binary and mixed explanatory varia-
bles, the robustness and some diagnostics have been considered. The apparent error
rates and asymptotic efficiency of the logistic discriminant rule, as compared to the
ordinary linear discriminant rule, were quite often investigated; among others, La-
chenbruch (1975), Fatti et al.(1982), Dietz (1987) and McLachlan (1992) report such
studies. The conclusions are that the linear and logistic discriminant functions show
nearly the same performance in discriminating between two groups of data, at least
when the analysed data do not differ much in shape from the multivariate normal
distribution with equal covariance matrices in both groups of data.

What concerns the quadratic discriminant function, several studies (reported e.g.
by Dietz, 1987) have found that even in the case of continuous variables and obviously
different covariance matrices it happened that the linear or logistic discriminant func-
tions yielded smaller error rates than the quadratic one. This happened especially
when the sample sizes were small, and the number of variates (also the number of
the estimated covariances between the variables) was quite considerable. Dietz (1987)
shows also results from three real data sets in several (4-11) variables, for which the
linear and logistic discriminant functions yielded practically the same result, while
the quadratic discriminant function was in one set slightly better and in the two
remaining data sets slightly worse.

Bartkowiak (1988) reported an epidemiological study in Coronary Heart Disease
risk factors (5 variables) in which the so called risk deciles were calculated by the use
of the linear, logistic and quadratic discriminant function. Independently, the bounds
of the deciles were established by a bootstrap method. The risk deciles obtained by
the three functions considered in the paper were located within the confidence bounds
established by the bootstrap method.

5.4. Our simulation studies for data with different covariance matrices

All the formerly reported studies have considered some particular multivariate data
and the obtained results were also particular: it seems that the results with indications
on the preference of the individual discriminant functions were much dependent on
the data on which the analysis was performed.

To find out exactly how the individual discriminant functions act, we have plan-
ned a series of very simple experiments for which we could see exactly what is going on.

We have performed a simulation study generating bivariate data from three distri-
butions: (A) Banana shape, (B) Higleyman’s shape, (C) Lithuania (sausage) shape.

The simulation study was carried out using the package PRT2.1 (Pattern Reco-
gnition Tools version 2.1) developed by R. Duin at the Delft University of Technology
(Duin, 1997; Duin and Krose, 1997). The package needs the MATLAB and the
MATLAB Neural Network Toolbox (Demuth and Beale, 1997) environment.
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For each distribution (A), (B) and (C) mentioned above, we generated 2 groups of
data, which were differentiated in the location and shape parameters. Then we evalu-
ated discriminant functions (discriminant boundaries between the 2 groups) using the
linear, quadratic and logistic discriminant functions. The experiment was repeated
several times with varying parameters (shapes) of the generated distributions.

Since the generated data vectors were two-dimensional, we could make a scatter-
plot for each investigated data set, with the discriminant boundaries overlaid.

In that situation, along with calculating the error of misclassification (defined as
the ratio of the misclassified points to the total number of points in both groups of
data using the resubstitution method), we could also judge ‘by eye’ which discriminant
function was the most appropriate.

Exemplary scatterplots are shown in Fig. 2 (banana and Higleyman shapes) and
Fig. 3 (Lithuania sausage).

Let us point out that while the banana shape of distribution occurs perhaps
rarely in medical studies, the other two shapes may occur quite frequently.

Higleyman shape conveys the fact that investigating features in two diseases
we may find that in one disease one feature is contracted (has smaller variance),
while the other feature gets deregularized and we notice much increased variance.
In the other disease the opposite may happen: the variance increases for the first
feature and decreases for the second feature. Such situation happens, for example,
when investigating variables characterizing some respiratory diseases (Bartkowiak and
Liebhart, 1995).

The Lithuania or sausage shape is characterized by a parameter which we have
denoted as ss. This parameter characterizes the thickness and curvature of the sau-
sage.

The error rates for the data exhibited in the scatterplots (and some others for
which the scatterplots are not shown here) are presented in Table 1.

Generally, we have stated in that part of our simulation study that in case of
banana shape distributions all the three methods yielded approximately the same
error rates, in case of Higleyman’s and Lithuania sausage distributions the linear and
logistic discriminant functions acted very similarly, while the quadratic discriminant
function proved to be often much better, yielding in almost all cases considerably
lower error rates than those stated for the linear or logistic discriminant function.
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Fig. 2. Scatterplots showing two groups of of two-dimensional data with a linear, logistic
and quadratic discrimination boundary overlaid. Boundaries: for linear, - - - - logistic,
----- quadratic. Top: Banana shape with ss=0.8, error rates: linear 0.1250, logistic 0.1313,
quadatic 0.1313. Bottom: Higleyman shape, error rates: linear 0.1625, logistic 0.1500,
quadratic 0.0312.
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Fig. 3. Scatterplots showing 4 groups of two-dimensional data generated as ‘Lithuania
sausage’ with varying parameters ss. Linear ( ), logistic ( - - - - ) and quadratic ( ----
quadratic) discrimination boundaries are overlaid. Top: ss=1.0, error rates: linear 0.0938,
logistic 0.0938, quadratic 0.0312. Bottom: ss=1.0, error rates: linear 0.1750, logistic 0.1750,
quadratic 0.1250.
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Fig. 3. Continued. Top: ss=0.5, error rates: linear 0.1625, logistic 0.1313, quadratic 0.1000.
Bottom: ss=2.0, error rates: linear 0.2062, logistic 0.2062, quadratic 0.1437.
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Table 1. Error rates (resubstitution method) when applying the linear, the logistic and the
quadratic discriminant functions to various data sets

Experiment and Discriminant function

its parameters Linear Logistic Quadratic
Banana shape with ss = 0.8 0.1250 0.1313 0.1313
Higleyman shape 0.1500 0.1250 0.0375
Higleyman shape 0.1625 0.1500 0.0312
Higleyman shape 0.1688 0.1688 0.0437
Lithuania shape with ss=0.5 0.1625 0.1313 0.1000
Lithuania shape with ss = 0.5 0.1187 0.1125 0.0688
Lithuania shape with ss =0.5 0.1187 0.1125 0.1062
Lithuania shape with ss =0.5 0.1625 0.1938 0.1187
Lithuania shape with ss =0.5 0.1100 0.1350 0.0600
Lithuania shape with ss =0.5 0.1100 0.1100 0.0450
Lithuania shape with ss =1 0.0938 0.0938 0.0312
Lithuania shape with ss =1 0.1750 0.1750 0.1250
Lithuania shape with ss =1.2  0.3000 0.3063 0.2750
Lithuania shape with ss =1.2 0.2188 0.2313 0.1688
Lithuania shape with ss =1.2 0.1550 0.1550 0.1000
Lithuania shape with ss = 2 0.2062 0.2062 0.1437
Lithuania shape with ss = 2 0.2750 0.2812 0.2125
Lithuania shape with ss =2 0.2875 0.2812 0.2750
Lithuania shape with ss =3 0.3312 0.3312 0.3375
Lithuania shape with ss =3 0.3438 0.3563 0.3500

5.5. Our simulation studies for data sampled from the Gamma and the Negative
Binomial distribution

It was shown in Section 4 that for distributions being a member of the specific expo-
nential family described by equation (9), the discriminant function depends on a score
I(x) = bo+ b1z1 + ...+ bpz, which is a linear function of the observed variables. For
the multivariate normal distribution with the same covariance matrix, the coefficients
by, ..., bp are exactly the same as those appearing in the Fisherian linear discriminant
function. For non-normal distributions this is difficult to prove. To elucidate the
problem, we performed a series of simulation studies generating two-dimensional di-
stributions (X1, X2) from the negative binomial NegBin(r, px) and the Gamma(a, by)
distributions. These distributions are defined as follows:
— The negative binomial distribution NegBin(r,py):

r+z—1 o
Pk(X=w;r,pk)=( i )(1—Pk) D

where r € {1,2,...}, 0<pe <1, =z=0,1,2,.... We have for that variable:
EX = rpk/(l bt pk), VarX = ’f'pk/(l - pk)z.
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— The Gamma distribution fr(z;a,bg):

— L
xa—le 3

fl‘(x; a, bk) = W:

where z > 0,a > 0 denotes the shape parameter, by > 0 is the scale parameter and
L(a) = [ a* e ®dz; EX =aby, VarX =ab?.

Usually we have been fixing the sample size as n; = 50 for the first group and
ng = 70 for the second group of the generated data. The variables X; and X, were
supposed to be independent, with varying parameters in the generated two groups of
data. To satisfy (9) the appropriate parameters r and a were considered as fixed, and
the parameters py and by as group-specific.

The generated 2-groups data were exhibited in a scatterplot, where also the cor-
responding Fisherian linear and the logistic linear discriminant functions were added.

Two exemplary scatterplots are shown in Fig. 4. Points from the two generated
groups of data are marked in the plots by the characters 4+ and o.

Looking at the plots exhibited in Fig. 4 one may see that the two groups of data
have different variances. The linear discriminant function is certainly inappropriate;
none the less it could be adjusted by a shift towards the origin of the coordinate
system (this would be achieved by changing the intercept by).

Both the gamma and the negative binomial distributions are long-tailed. When
generating observations from these distributions, we have obtained in some experi-
ments also points from the tails of the respective distributions, which in fact are some
extreme points. These points look like outliers — which they are not. Such situation is
shown in the upper plot of Fig. 4. One can see there a point marked by ‘o’, generated
from the second distribution, but located among the points from the first distribution.

Such situations were observed also in some other graphs, not shown here. It
would be interesting to investigate how much these extreme points are influential for
the coefficients of the linear and the logistic discriminant function.

We have performed several series of simulations, varying the parameters of the
generated pseudo-random observations. Details for four series of experiments are
given in Table 2. The reported error rates were calculated by the resubstitution
method.

We have observed the following facts.

~ On the average, there was a slight reduction in the error rates when applying
the logistic discriminant function.

— It happened quite often that among the data (generated from long-tailed distri-
butions) some ‘outliers’ could be observed, i.e. single observations generated according
to the formula describing the probability distribution in group 1 appeared among the
observations belonging to group 2; or vice-versa.
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Fig. 4. Boundaries between two groups of data established by the linear and the logistic
discriminant functions. Top: Generated from the negative binomial distribution with para-
meters p1 = 0.4 and p2 = 0.9, keeping r = 4 as constant. Error rate: 0.05 for the linear and
0.0083 for the logistic discriminant function. Bottom: Generated from the gamma distribu-
tion with parameters by = 0.4 and b2 = 5, keeping a = 10 as constant. Error rate: 0.0833
for the linear and 0.0000 for the logistic discriminant function.
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Table 2. Average error rates obtained when applying the linear and the logistic discriminant
functions to four series of experiments of simulated data

Average error rate

Experiment (parameters) Fisherian logistic logi<lin* Number
linear discriminant of runs
function function
NegBin (r = 10,p1 = 0.8,p2 = 0.3) 0.0242 0.0091 54.5% 22
NegBin (r = 5,p1 = 0.1,p2 = 0.9)  0.0256 0.0241 89.5% 19
Gamma (a = 4.0,b; = 0.5,b0 = 5.0)  0.0504 0.0312 90.0% 20
Gamma (a = 10,b; = 1.0,b2 = 5.0) 0.0452 0.0373 61.9% 21

* Denotes the percentage of the experiments (in the series of simulations with the same

parameters) for which the logistic discriminant function produced lower error rates.

— For the moment we can not say decidedly whether the logistic discriminant
function proved to be more robust against such outliers.

— Quite frequently it was observed that after adjusting the intercept of the Fi-
sherian linear discriminant function the results of the discrimination by the logistic
and Fisherian linear discriminant functions would be very similar.

6. Discussion and summary of the results

It has been stated that the logistic discriminant function with a linear score a(x) in
the observed variables may give a good classification rule when the observed variables
follow a distribution which is a member of the exponential class of distributions spe-
cified by (9). Although this formula allows to account to this class, among others, the
univariate gamma, the binomial, the negative binomial and the Poisson distributions,
these should be introduced into the model as mutually independent variables, what
is a serious restriction because in real data it happens usually that the considered
variables are mutually dependent. It may also happen that in one of the groups the
categorical variables are somehow interdependent and exhibit interactions of higher
terms, while in the other group they are not. In such case the logistic discriminant
function will be inappropriate.

Our main conclusions are the following:

1. The logistic discriminant function may give in some special cases, especially
when the data follow the special exponential family distribution (9), slightly better
results than the Fisherian linear discriminant function.
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2. It is always worth to investigate the covariance matrices in the considered
groups of data. If they are apparently different and the number of variables dealt
with is not very high as compared to the size of the data, then it is worth to try to
apply the quadratic discriminant function.
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Czy logistyczna funkcja dyskryminacyjna jest lepsza od liniowej ?
STRESZCZENIE

Logistyczna funkcja dyskryminacyjna cieszy sie duzg popularnoécia, szczegélnie w ba-
daniach epidemiologicznych. Jest uwazana za bardziej ogélng niz klasyczna liniowa
funkcja dyskryminacyjna Fishera. Jednakze nalezy zauwazy¢, ze za wigksza ogélnoéé
trzeba placi¢ bardziej skomplikowanymi iteracyjnymi obliczeniami. Naszym celem
jest ostrzezenie potencjalnych zwolennikéw funkeji logistycznej, ze funkcja ta wcale
nie daje duzo wigkszej ogélnosci niz klasyczna funkcja Fishera. Aby to nastgpilo,
potrzebne jest spelnienie pewnych warunkéw. W pracy pokazujemy ze szczegétami,
dla jakich rodzajéw danych logistyczna funkcja dyskryminacyjna daje lepsze rezul-
taty, a kiedy takie same jak liniowa funkcja dyskryminacyjna Fishera. Pokazujemy
réwniez, dla jakich rodzajéw danych — doé¢ czesto spotykanych w praktyce medycz-
nej — obie te metody sa nieodpowiednie i daja gorsze wyniki od kwadratowej funkeji
dyskryminacyjnej.

SLOWA KLUCZOWE: funkcja dyskryminacyjna, rozklad a posteriori, rodzina rozkladéw
wykladniczych, ksztalt macierzy kowariancji, rozklady o cigzkich ogonach.



